您现在的位置:首页 >> 工业4.0 >> 内容

工业4.0时代的制造新思维

时间:2014/12/25 9:28:32 点击:

  核心提示:中国工程院“制造强国战略研究”重大咨询项目组特邀美国辛辛那提大学特聘讲座教授李杰在中国工程院做了题为“智能机器和工业4.0制造系统的智能分析”的学术报告。此前,德国产业和学术界率先提出了工业4.0的概念,希望通过融入虚拟制造及智能制造,使传统的制造业发生革命性改变,而德国人的幕后高参仍然是李杰教授。...

  中国工程院“制造强国战略研究”重大咨询项目组特邀美国辛辛那提大学特聘讲座教授李杰在中国工程院做了题为“智能机器和工业4.0制造系统的智能分析”的学术报告。此前,德国产业和学术界率先提出了工业4.0的概念,希望通过融入虚拟制造及智能制造,使传统的制造业发生革命性改变,而德国人的幕后高参仍然是李杰教授。为使读者了解即将到来的这次制造业革命的大致内容及其背景,笔者专访了这位提出“从创新到创值”、“预测制造”等全新概念并一直在产业一线提供战略咨询的专家。

工业4.0时代的制造新思维

  “工业4.0”也是预测型制造的时代 

   笔者:您在前不久发表的文章中说,现在是预测制造的时代,工业4.0和预测制造这两者间有何关联?

  李杰:工业4.0的概念有三个支撑点:一是制造本身的价值化,不仅仅是做好一个产品,而且是把产品生产制造过程做到浪费最少、制造过程与设计者配合;二是制造过程中,根据加工产品的差异、加工状况的改变能自动作出调整,达到具有所谓的“自省”能力,也就是整个系统,包括设备机器本身,在设计制造过程中能根据变化的情况,及时作出调整;三是在整个制造过程中达到零故障、零忧虑、零意外、零污染,至少要低忧虑、低污染,使制造过程达到最小忧虑化,这就是制造业的最高境界。

  以工业制造业的基础装备机床来说,以物理形态存在的机床大家早已熟悉,但是工业4.0时代的机床和我们原先对机床的理解是有很大差异的。譬如它工作时和停机时是不一样的,机床工作时其内置的传感仪器将机床的状态通过信号的形式发送出来并转换成信息,这些信息可以用于对机床状态的分析。

  同样,4.0时代的螺杆,可以提前显示什么时候需要做润滑保养。机床性能减退,造成精度失准,这是制造业需要竭力避免的事情,但是过去人们只是凭经验推断,很多时候其实是不知道所谓的机器性能衰退时间的。从这个意义上来讲,工业4.0时代就是预测制造的时代,比如飞机的起落架,出厂前出厂后,我们会帮生产厂家做一个测试,然后就可以算出来,螺杆一旦处于使用状态就会自动反馈机械运行信息,这样企业就能实时了解这台设备的健康情况如何。

  以此类推,4.0时代的轮胎,那些一直在接货送货的轮胎,哪个轮胎变化特别大,哪个轮胎的健康在衰退,什么时候应该翻胎,都是可以分析预知的。

  4.0时代的汽车,开到一个地方突然会接到提示说,前面50米处有一个坑,这是因为前面的车也有传感器,而它经过后产生了感应信息,把这个信息分享给了相近的车辆。诸如此类的案例我们有100多个。

工业4.0时代的制造新思维

  具有“自省”能力的预测制造系统

  笔者:关于预测制造,好像还是一个很新的概念,能否请您再作一点具体描述?

  李杰:如前面所说,在现代制造中,存在着许多无法被定量、无法被决策者掌握的不确定因素。这些不确定因素在制造业内外都始终存在。

  解决制造过程中的不确定问题的第一步,是将其分为两部分:可见的问题和不可见的问题。

  可见的问题包括加工失效、产品缺陷、极低的循环寿命和整体设备效能下降等。这些可见的状况和信息,通过事后分析大部分都可以找到原因。事实上在日常的工业生产中,可见的问题是容易看到并能够得到解决的。

  不可见问题通常表现为设备的加工性能下降、零部件磨损等。这些不可见的问题,恰恰是很多人所忽视的。人们通常想当然地认为,一台正常的设备是能持续有效工作较长一段时间的。而这在真实的工厂生产中基本上是不可能的,而看不见但每时每刻在发生的设备损耗则是事实,但在很长的时间里,人们忽视了这一事实,当然那时即使知道了也没有太多的办法,一般只能是到了所谓的设备老化期就将设备报废了事。

  我们提出的思路是:提供透明化的工具和技术,将不可见环节中产生的问题复现出来,这才是解决问题的关键。所谓透明化就是阐释并量化那些不确定性因素,以使生产组织者能客观地估计自身制造的能力。

  为了使设备真正透明化,制造业必须尝试改变为可预测的制造。这样的革新需要使用先进的预测性工具和方法,从而使得制造过程中不断产生出来的数据可以被系统性地处理为信息。这样的信息将有助于解释不确定因素,从而使生产资源经理和过程主管掌握信息,然后有把握地做出决定。由此,我们提出了“预测性制造系统”(Predictive Manufacturing)的概念。预测性制造系统,可以使设备拥有“自省”能力,因而能提供给用户透明化并且最终预防有关产能、效率和安全性的潜在问题。

  预测性制造系统的核心技术是智能运算(SmartAnalytics)单元,它包含了对设备功能性进行预测建模的智能软件。对设备性能的分析和失效时间的估计,能够降低设备性能这一内在不确定因素的影响,使用户得以缓解或者消除制造运行中产能或效率上的损失。

  上面提到,工业4.0时代制造业追求的目标是实现“无忧虑的制造”。达到这一境界,有赖于运用自动化手段、使控制器的软件能预测装备、设备的衰退状况,并加以及时调整。譬如一条生产线上有很多传感器,但传感器本身如果衰退(这是经常会发生的)了,设备只能在出了问题后才去处理;而“自省功能”就能让员工知道哪个传感器不稳了,这样可提前更换,或是跳过这个传感器。这就是一种所谓的自省式的智能化,而非单纯的智能化,工业3.0时代的智能化就是控制系统、控制器加上计算机。而工业4.0是具有自省功能的智能化,是能根据生产环境和设备状况随之作出调整的预测制造系统。

工业4.0时代的制造新思维

  从不可见问题入手提升创新价值

  笔者:记得几年前您曾经在我们报上提出创造出更高的价值是创新应有的涵义,包括您提出的“蛋黄蛋白理论”,这些思维在工业4.0时代如何体现?

  李杰:首先我想再次强调,引导产品创新的,不是通过去找需求,而是去找GAP(空缺)。通常来说创新分三种:企业经常性地改进产品,把产品改得更受用户喜欢,这是第一种连续性的产品创新;第二种是非连续性的产品创新,目前大部分产业研究院都在做这种事情。一种新技术用上后,可以引出多项发明,改变了整个产品。这个就是所谓的研发;第三种是我一直讲的主控式创新(Dominant Innovation)。此种创新不直接面对消费者的需求,而是以情境模拟的方式,思考该赋予新产品哪些功能,并以突破性的创新研发技术完成该项新产品雏型,接着才将之推至消费市场。在情景模拟中发现产品的新功能,我称之为“发现GAP”。

  通过发现GAP来推动的创新跟其他几种创新模式是不一样的。这种方式不是以人(消费者)的需要为出发点的,也不是都听顾客的。顾客一般都是追求更大的蛋黄,很少给你讲潜在的、外围的东西,很可能他们还没有这种意识或根本就不知道。就比如买车子的人更关心的是耗油情况,但很少人知道司机开车的习惯可能影响20%的油钱。所以这里的GAP不是车子,而是司机的开车习惯。如果仅仅按照顾客的需求来做车,那制造商会努力生产更省油的汽车、更舒适的汽车,在过去的汽车技术上不断精进。这是一种传统工业时代的思维方式。而采用GAP式创新,则是通过数据来模拟情景,不断发现顾客根本没有注意到的产品新功能。我举一个中国国内正在发生的案例,一家原先做家具设计销售的企业“尚品宅配”。五六年前,这家企业的老总接受了我们有关创新创值的理念,企业逐渐从卖家具转向更注重消费者的居家感受,买家只要提供房型及一些个性化的要求,这家企业就能帮客户设计并定制适合的家具。宜家是它有什么你买什么,尚品是你想要什么,它提供什么,他们现在在制造方面只是作了一些模板,让机器去配合,在选式样、颜色、性状方面已经实现了模组化。尚品不是从家具出发,而是从居家的生活感受出发,如再能和制造系统匹配起来,就接近工业4.0前期了。

  通过分析数据,预测需求,预测制造,这就是我们希望倡导的工业4.0的思维。现在大家都在谈大数据,但大数据本身不是一个问题,而是一个看问题的方式。大数据本身不重要,信息量和创造价值的过程才是真正重要的。大数据只是一个现象,只有真正分析利用了,才会有价值。

作者:工业4.0 来源:工业网

  • 摩奥MRO工业品网(www.zhmro.cn) © 2018 版权所有 All Rights Reserved.
  • Email:mro@zhmro.cn 站长QQ:49563458 版权所有 珠海欧科信息科技有限公司旗下工业网 网站地图 粤ICP备15010265号-1
  • Powered by laoy!